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FOREWORD

This report describes the effort conducted in the Mechanics
and Surface Interactions Branch (MLBM), Nonmetallic Materials
Division (MLB), Materials Laboratory, Air Force Wright Aeronauti-
cal Laboratories, Wright-Patterson Air Force Base, Ohio, under
the contract with the University of Dayton Research Institute,
Contract Number F33615-81-C-5056.

The work reported herein was performed during the period
1 February 1981 to 30 November 1981.
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SECTION I

INTRODUCTION

The principal problem of interest in the present investi-

gation is the same as that treated in [1], i.e., the stress

analysis of a composite laminate built of anisotropic elastic

layers of uniform thickness and subjected to prescribed tractions

and/or displacements on its boundary surfaces. The body is

bounded by a cylindrical edge surface and upper and lower

faces that are parallel to the interfacial planes. This assumption

is made only for convenience in writing the governing equations.

There is no difficulty in extending the model to include

laminates of variable thickness.

In practical applications, numerous layers may be present

(use of 100 layers in aircraft structures is not unusual). Contemp-

orary models are incapable of providing precise resolution of the

local stress fields in the vicinity of stress raisers under

such conditions. Global models, which follow from an assumed,

usually elementary, displacement field, lead to the definition of

effective (or smeared) laminate moduli and are not sufficiently

accurate for stress field computation (1]. On the other hand,

local models, in which each layer is represented as a homo-

geneous, anisotropic continuum, become intractable as the

number of layers becomes even moderately large - in some methods

as few as four layers result in technical/economic barriers to

accurate stress resolution. In this work we blend these concepts

into a self-consistent model which can define detailed response
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functions in a particular, predetermined region of interest (local),

while representing the remainder of the domain by effective

properties (global). Such dual representations are not without

precedent in solid mechanics. For example, Gurtin [2] discussed

this approach with reference to the solution of crack-tip stress

field problems. Wang and Crossman [3] used an effective modulus

representation of regions of a laminate, however, only the

extensional response of the regions were considered, i.e., the

flexural and flexural-extension coupling characteristics of

laminated bodies were ignored. Hence, that approach fails to

provide correct solutions to certain elementary laminate problems

for which exact solutions are available. Stanton et. al. [4]

used a global representation based upon a three dimensional

laminate model developed by Pagano [51 which is based upon the

assumption that the stress field is only a function of one space

coordinate. This is a generalization and improvement of the

material model given in [3], however, this approach is not

convenient for coupling with the model presented earlier [1].

Furthermore, it is desirable to retain the model [6] as a special

degenerate case of a global model since that result was shown to

produce very good agreement with a known elasticity solution for

transverse normal stress u [7].

There have been several investigations of the interlaminar

stress fields in laminated composites. Pagano [1] has given a

detailed description of the relevant literature in this field.

A recent review article [8] by Solomon presents an up to date

literature survey in related topics as of 1980. In the present
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paper, reference will be made of only those publications which

are not covered by (1] and [8]. Spilker and Ting [9] have con-

ducted the static and dynamic analysis of composite laminates

using hybrid stress finite elements. Raju et. al. [10] have

investigated the free edge stresses in layered plates using

eight node isoparametric elements. In both these publications,

the laminate idealization for a reasonably accurate finite

element analysis had to be very fine, i.e. a quarter of the

laminate was divided into about 600 elements. No more than four

layers were considered for numerical calculations. For moder-

ately large number of plies (say 10), these approaches will

lead to computer storage/economic difficulties.

Blumberg et. al. [11] studied the edge effects and stress

concentrations in composite laminates made of glass sheets bonded

with polymer adhesive. The governing equations employed were

similar in nature to those given in [1], however, not as general.

For example, only isotropic layers were considered with the stiff

layers being represented by the Kirchhoff-Love theory. Further-

more, the implied edge boundary conditions are not sufficient to

satisfy the principle of "layer equilibrium" [1]. The differential

equations were solved by perturbation technique defining the

dependent variables at three different regions along the width of

the laminate. This division of the width has enabled the authors

to overcome computation overflow/underflow difficulties.

Finally, Partveskii [12] has presented an approximate treat-

ment of a free edge problem. This model combines the treatment of

[131 with a model based upon a layer on an elast foune ..on in

order to define the distribution of interlaminar normal stress.

3



SECTION II

VARIATIONAL PRINCIPLE

The laminate considered in the present investigation is

shown in Figure l(b). The laminate thickness comprising of N +

M layers is divided into two parts viz; (i) local region (k)

and (ii) global region (g). N is the number of layers in the

local region and M is the number of layers in the global region.

In this work, we shall assume that the interface between g and L

is a plane z = constant, although less restrictive assumptions

are possible. A variational principle as described below has

been used to derive the set of field equations and boundary

conditions. Different variational functionals in two different

regions of the laminate are used such that

6 f(f dv + f 1 (u + ) )- w]dv - f uds = 0 (1)Vg V [2 i j  ij , j,i so ii

where w = w(ui, e ij), W = w( ij, e ij )  (2)

and body forces are neglected.

In equation (1), the first term represents the potential energy

for the global region, the second term is the Reissner varia-

tional functional for layers in the local region and the third

term is the potential energy of the prescribed surface tractions.

The notation used here is the same as that of reference (1], with
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the exceptic- that the subscripts 'L' and 'g' denote respectively

the local and global regions. In equations (2), w and w are strain

energy density functions, the first in terms of displacements ui

and eij, the expansional strain, components, and the second

in terms of stresses aij and eij.

For a layered continuum in the local region, equation (1)

can be rewritten as

(U f'] (k) d T. (u.s +

f 2 ij i j vk u
k=l Vk S

f ;dv = 0. (3)
Vg

where the superscript (k) attached to the bracket signifies

that each variable within the bracket is associated with the

kth layer. The use of Green-Gauss theorem and soric mathematical

manipulations in equation (3) yield the following equation,

N H ui' +uJ'i a _ a u.(k)dvk +E f2 Da .) ij °ij,j uI] k

k=l V k  13

f (T i- Ti)6uds + f T.6u.ds + (Ti k) 6 u~k) +

S S k=l Ik
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6u kl)dl k- f (Ti~ 6u idv + J (r.-Tf )6u ids +f ud

(L) )V 
Sg

T. +T g  = 0. (4)

Vk is the volume of kth layer, S and S represent the

* surfaces bounding'the local region, the former representing

ortion with prescribed tractions and the latter with

:ribed displacements. Ik  represents the interlaminar

Lce between kth and (k+l)th layers in local region that does not
it

ig to S' or S , S' and S" represent the bounding surfaces
g g

ie global domain with prescribed traction and prescribed

acement conditions, respectively. S represents the surface

i to the local domain and the global domain. A superscript/

ript Z denotes the local region and g denotes the global

,1. Clearly, as shown by equation (4), the governing equations

asticity can be obtained as a consequence of variational

ion (1). Equation (4) will be used to derive the field

ions and boundary conditions for the two regions of the laminate.
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SECTION III

DEVELOPMENT OF THEORY

For each layer in the local domain, the theory developed in

[1] has been used. The details of the derivation of equilibrium

equations and continuity and boundary conditions for this domain

are not repeated in this paper. For the sake of continuity, only

relevant equations are provided. Figure 2 shows the coordinate

axes and thickness of a single layer in the laminate. The inter-

laminar stresses az, Txz and Tyz at the top of the layer are

denoted by P2' t2 and s2 , respectively, while the corresponding

stresses at the bottom of the layer are designated as p1 ' t1l and

s i" In the local domain the inplane stress components are assumed

to vary linearly through the thickness of each ply. The

substitution of these stress components in the differential

equations of equilibrium [1] yields the interlaminar stress

components in terms of tractions pi, ti, si (i = 1,2) and force

and moment resultants. These stress-stress resultant relations

have been used in equation (4) in local domain integrals. In

the global domain, an assumed continuous thickness distribution

of the displacement field is used. On the basis of these

facts, the field equations, interfacial boundary conditions,

and edge conditions within the local continuum remain the

same as derived in reference [1]. The development of the

required relations for the global domain and global/local

interface follows. We assume that the global domain is

composed of layers, each possessing a single plane of elastic

7



symmetry, z = constant. In this domain, the displacements are

assumed to be of the form

u = u°(x,y) + z (x,y)

V = V°(x,y) + zX (xy)
y 2

z

where u, v and w are the displacement components in the x,y and

z directions, respectively. It can be seen that the number of

displacement functions agrees with that given by the variational

principle for each layer in the local domain. The substitution

of the displacement functions (5) into the strain displacement

relations of elasticity leads to the following stress-strain

relations

a. = Ci (c? + zK. - e.) (i,j = 1,2,3,6)
1 J I (6)

a.= C (C3 + z . + Z 9) (i,j = 4,5)
2i  j 3 ) 2

in standard contracted notation, where Cij are the components of

the anisotropic stiffness matrix, e. are engineering expansionalo)

strain components and c , Ki and are defined by

0 u 0 av*=u 2_,
E ax' 2 y 3 z

0 0 0 0
0 aw 0oE 0 + aw 0 au aV

4= y +ay E 5 
= x + x-S6 y x

ax kY
1 ax - 2  ay' 3 =

3 z .a z x Y
A a y- 5 6 y a

= ' 21, ~ - K a
84- 3y 5 ax

The stress components l, 02, 03, 04, 05' 06 stand for x, y,
0

az, Tyz , T xz~ ITxy, respectively while e (i 1 ,2 ....6) represent

8



corresponding engineering inplane strain components. We

introduce the following stress and moment resultants
H/2

Ni f idz
-H/2 (i = 1,2,3,6)

H/2 (8)
M i= f ai zdz

-H/2

where H is the thickness of the global region and N3 and M3

are mathematical, not physical, quantities.

Substituting equations (6) into (8) and conducting the

integration, we obtain the following constitutive relations

for the global domain

Nx = A asg+ B aaK -Pa
(uS = 1,2,3,6)mV

M = B ec + D K-,m2 6

V= A. .? + B.i + 1 D a

i ij j j 2 i j
1 (i,j = 4,5)

R. = B.. + Dij.j + i F ij a
1 3 1) j jj (9)

Dijjc  + FijKj + ijaj
where H/2

(Aiij' Bij'l Dis ' Fij H ij (1,zz 2 'z3'z Cijdz

-H/2 (i,j=l,2,...,6)
H/2 edz

p f
-H/2

H/2

00= f zCsesdz (ae = 1,2,3,6)

-H/2

(Vi,Ri,Si) f aH/2ai(1,z,z 2)dz (i-4,5)

-H/2

9



With the knowledge of the distribution of elastic properties

C.. and expansional strains, one can obtain the values of
13J

effective stiffness matrices A, B, D, F and H; and effective

"nonmechanical" stress and moment resultants, Pi and Qi"

As in (1], we make the following definitions

H / 2  2z 4z 2 2dz(f,f*,f) = f H' Hz(10)
- /2 ,-- , H2 )  H (10)

where f may represent any of the displacement variables u, v

and w. Through the use of relations (5) and (10), the functions

involved in the displacements for the global domain can be

expressed as

1-
UO 2

w 9 15 A

8 8
3 (11)

x H

3 v*y H

3w*I z H

45 A( w

4, = H

With these relationships, one can express the constitutive

relations for the global domain in terms of the same displace-

ment parameters as those for the local domain. This simplifies

the definition of the required continuity conditions.

With the use of the assumed stress field in the local region

and displacement fields in the global region in equation (4),

10



the required field equations, continuity and boundary conditions

can be obtained. For the local region the equilibrium equations,

constitutive relations, edge conditions and interfacial continuity

conditions are given in [1]. For the global region the equili-

brium equations, which follow from substituting (5) into (4),

become

N +N +t -Nt6 = 0Nl,x 6,y 2 1

N6,x + N2,y + s2 s 1 0

-N3 + R4 ,y + R5 ,x + (pl+P 2 ) = 0

M +M 6 y V5 + ! (t2+t1 ) = 0

M + - V4+! s+

M6 ,x  M 2 ,y 4  (s2s I  = 0 

(12)
V5,x + V4,y + P2 - Pi = 0

H2-M++Sp2-P+-(
-M3 + S4,y + $5,x + 2 Pl) 0

where the symbols ti , sit and pi (i = 1,2) retain the same

meaning as defined earlier for the local domain. Assuming

perfect continuity of tractions and displacements at the g-Z

interface, the local-global interfacial conditions are given

by the previous substitution into (4), as

t(k) = tk+l)

8(k) = (k+l) (13)

2 1

pk) p(k+l)

~2 1l

11



and (a) local-global (interface I of figure la)

-S 5T -S5 T5 (k) =-u 0 + H (k+l)

-5_S45T4 S55T5 (k) = [-v 0 + H 1x ]
[S 4 _S 4 4 T4 _S4 5 T5 ] k1 - - (ky]

52 (13a)

(k) [-W + 20 ] (k+l)[Y 2 -S332 = 1 H _ S

It can be shown that if we consider more than one global region,

the following interfacial conditions are required:

(b) global-local (interface II of figure la)

[uO+x I(k) = [C-S 4 5Q4 S5 5 Qs] (k+l)
2!x'

[vO+ _4y] (k) = [a 4 -S 4 4 Q4 -S 4 5 Q5 ] (k+l) (13b)

o+H. +H2..(k)(kl
w2z8 [y 1-S33R1 kl)

(c) global-global (interface III of figure la)

o H (k) H (k+l)
Cu, +j!] W [uo-jj x ]  l

2 x 21x]

H (k+l)
[vO+O-,y ( kI[v) (13c)

o+H H2  ()H H2  (k+l)
w z+ ] = 2 z k8

where the parameters with superscript 'k+l' represent those for

the layer above the kth layer. The parameters on the left-hand

side of equations (13a) and right-hand side of equations (13b)

are defined in reference (1]. In the expression for R2 of I'l,

the roles of p1 and P2 were interchanged by mistake whereas R,

was correct. The correct expression for R2 is

(6P 2 +pl) h 2-7hNZ-30Mz ?
R2 = 70p14)
2 70h

For the edge surface of the global domain, one term each of the

following products must be prescribed:

12



Nnun, Nnsus, M n~n , M nsg , Vnw , R nqz , Sno. (15)

The boundary conditions at the top surface are given by

t(N+l) = (N+l) or u0 + U
2 2 2

(16)

8(N+1) ,-(N+l) +E %.
32 s 2 or v 2 y

(N+l) .(N+l) H !2P NI N+)or w" O + !!--, W

where the right hand sides in the aforementioned equations (16)

represent the prescribed external tractions or displacements.

The boundary conditions at the bottom surface remain the same

as those explained in reference [1]. This completes the

development of the present theory. We observe that the governing

equations for the global continuum, equations (9), (12-13),

combined with the governing equations for the local continuum,

equations (25-28) of [1], and boundary conditions at the bottom

and the top surfaces constitute a set of 23N + 27 equations in

terms of like number of unknowns. This system can be reduced

to 13(N+1) equations by eliminating the force and moment

resultants from the set of governing equations. Relations (15)

show that 7 edge conditions are required for the global domain,

while 7N edge conditions are required for the local domain,

equations (29) of (1].

13



SECTION IV

PROBLEM DESCRIPTION

The present model has been used to conduct the free edge

stress analysis in a symmetric laminate consisting of 2(N+M) per-

fectly bonded layers, see Figure 1. The laminate is subjected to

forces applied only at the ends y = const. such that a constant

axial strain ey = e is imposed. Because of the symmetry in ply

orientation of the laminate about the midplane, the deformation

is symmetric with respect to x and z. Only the z symmetry will

be employed in the specific problem treated, so that half of the

laminate thickness has been considered. The lower N layers form

the local region whereas the remaining M layers constitute the

global region. The stress field in this class of problems is a

function of x and z alone and consequently the force and moment

resultants and the interlaminar stresses depend on x only.

14



SECTION V

SOLUTION

1. LOCAL DOMAIN

By the use of strain displacement relations (1) of [14]

it can be shown that the most general form of the weighted

displacements within each layer is given by
Cly2

u = U(x) - 2 + C 3y

= V(x) + Clxy + C2Y

hw = W(x) - 6C5 xy + 3C4Y - Y2

u*= (x) + C5Y (17)

v*= (x) + C6 y

w* = 4(x)

hw = X(x) - 2C 5 xy + C4Y - C6 y 2

where U, V,... X are arbitrary functions of x and C1 , C2... 6

are constants. We should recall that the stress strain relations

(3) of [14] must be written for each layer. The use of the

foregoing relations in the strain-displacement relations yields
€l i =2 - U' = h'(x)

e -V'y h(CX+C2 )

£3 = 3 w* = 30(x)

6 ( , + , ) = h [V,(x)+C
6 = 15

15



t!

h  x 2 'W(x)

4 'y 46h ] 2  h2

2 4 -V*,y = t-C 6

(18)

K h (3w0-w) 35 -
K 3  4 h = [3X(x)-w(x)]

h2  ( = h2  x !K6 - U'+V*'x _ [Q' (x)+C5
6 4 y x 4 5

4 h =w +- - 4 [2Q(x)-2C5 x+C4 ]E4 8 2 45 4

= h , 5u 5- 5U* = 5 [W' (x)-X' (x)+4P(x)]5 8 (Wx-Wx+- 2 8

in each layer, where h is the layer thickness. The

substitution of the strain components (18) in the equilibrium

equations (28) of [1], through the constitutive relations

(25), [11, gives

hh , 33hA
A112U"+3A 30'+A162 V +A13 10 (P1'x+P2'x2)+t2-tl=Ajj,x - 2c

h -, +A66 h v" A36 S 3 3 h P 3

162U +3A 3 6 ' 662 ' 10 +Pl 2, x) + 2-s =A6 3 e - 2

h h- hv 2
A 1 3 -u'+3A3 3 +A 36 4vy (A33S33-5) (Pl+P2 )4-!(tl,x-t 2 ,x) =

A jej-A h h)-A3

B l h2  B16 h ^"l B1 3S33h
2 )  5A  Q

4 4B13 7- 28 x-Pl,

-5A (W'-X'+4iP)+52(t+t 2 ) = A (C-2C x )

25 12 h1 2  2A5
B1 6 h 2O"B B66h a"l B3 6 S3 3h )- 5 A

4 4 3 6 (3x'-W')4 " 28 x-Pl, 4
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-5 (WO+0 5h (C -2Cs X
5 5
8A "I5 45(W'-x'+4 ')4-jt 1,x++2 A4 (2C 5x)+2l= C5

5 5B h
~B1~P'122 3 (3 X-W)4B3+P OL(B -14) (P P) -2L(t +t-2,J

h1 " 16'4 33S33- (21 2 , 2x

P C5 (19)

These equations are valid within each layer. Similarly the

remaining field equations, the interface continuity conditions,

are given by

i 1 hX 5s 3, 3l (k4-l)
+. tW'+'+U_P-T[S55 (3t 2 )+S4 5 (3s 2 )] (k)

= 3 (c5 (k+l) +C(k) )y+(C 3 (k)_c (k+l) )y+(C 1 (k+l)_c 1 (k) )y
2 .

5V ' hS4(3tl-t2)+S4 (3sS-S2) (k + l )

+(5 h(k

+ (-V_- [S4 5 13t 2-tl)+S4 4 (3s2 _S ) ](k)

1 (C (k+l) (k) 1 (k)+c (k+l) (k+l) (k)

2 5 +C5  )x(c 4 4 4  )+3(C 6  +C6  )Y

+ (C1 (k)_c1 (k+l)) xy+(C2 (k)_c2 (k+l))y.

35 --- U'+(-21A +L05 - V'+ 1 5 3h
35 2 33 S3 3  2 213

+ 225B 33 525_)x+ (- 75 105 ) 15B36h
+ 2h 2-- 3 3

xh h 3-3 + 2

+hpl(6-- A 3 15B 33S 3 3 )h 7A 33 S+15B 33 S (k)JJ
+ ( $33 14 )+hP 2 (l---- $ 3 3  14 33]

+( - 13 h -A +105 )  7A36h V

- 2 A 33 2S 333
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225B3 3 + 525 ) 75 105 \ 15B36h

2h 2S h3 ( tB 3 3 -2- 33hW 2

7A33S33 +15B 33S 33 7AS B3 33 (k)
+hpl(i0- 33 + hp 2 (6 10 -4 15- S

1 10 14 10 14 3

(k+l) (k) (k) (k+l) (k+l) (k)

6( C5  C5 C4  C4  C6  C6-kl jj xy 3 ~ )y+3(- )y2
h (k+l hk h k hk+l hk+l hk

(k+l)(k+l) (k+l)(k)(k) (k) 1 23h A3 6 h

72 C -7 C +7A7 73
-1-0(S 3 3 A2 3hk+lCl +S 3 3A2 3 hkCl)+-5 ( 33 2 2 2 3 3jej

15 15 (k+l) 7AhC3+7Aj

-- B 3 6hCj + $ 3 3 - - 3  "'2B 6+ :'-- 65]35(S3n 2 2-  3 jj

15B 23h 15B h-(k)

2 6 23 JJ

t(k) = t(k+l) V

(20)

s(k) = s(k+l)

p(k) = p(k+ l )

p2  p 1

The last six equations are valid for k = 1, 2,--,N-1, since we

recall that N is the number of layers in the local region.

Due to the symmetric lamination geometry, the interlaminar

shear stress components and the transverse displacement

component W all vanish on the central plane, z = 0. We shall

take advantage of these conditions by considering only the

upper half of the laminate, i.e. z>0. Thus, the boundary

conditions at the lower surface reduce to

18



(1)
533 7A 105 7A 363[__T _3hU,+(21A 33 +S 33 ) _2hV B, 13 h ,

225B 33+213
+2 33 35 15 )+( 75 105

(2 h 2S 33 h)X+( B3 3 +2hs 3)W
15B 36  A3 3 S3 3  15B 3 3S33  7A3 3 S 15B 3 3  (1)
+ hl'+hPl (6-7 A 3 S 3  3)+hp2 +(i_3

1 10 14 2 10 33 14 33

- y6C-5 3C-4  3C 6 2 x S3 7A2 3  7A
=y - - y +1 - $,S 33 A 2 3 hC L 3 - [ -_ h 2  36 7 e

+l 15 (1)
+tB23hC6+ B36hC51 3

and

) = S 0 (21)

Since equations (19-21) must be satisfied for all values of

y, it follows that

c4k) = CCk) = c~k)= 0, k = 1,2,.. .N

and

C(k+l) = C(k), C (k+l) = c(k), C(k+l) = c(k), k = 1,2, ... N-1

so that Cl, C2 and C3 are the same for each layer. Further,

it has been shown in (1] that

C1 =C 3 =0

C 2 = 2 c

We will use these values of Ci in the forthcoming work.

2. GLOBAL DOMAIN

With the aid of relationships (11), we can obtain the

following strain displacement relations for the global domain
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-o 1 -

x x

1 -

y f ',y

£0 3C o = 3- W*
z H

£01-xy 2 V u v Vx)

0 3 +9 - 15 A
yz H 8 y 8 W1 y

0 3 U* + 9 - 15A
xz H 8 W'x

Ki =  U*
H 'x

(22)
<2 H 'y

45 H 4
K

3 4=2'(3y' ,y

H2 345 (A

5  H2  w x W'x
K4 3 W*,

4  H 'y

K5=- W*,5 H 'x

<6 = (u*,y + v*,x)

A
re u, u*, --- w now refer to the global domain. We may

D observe that the relations (17) are also valid for the

bal domain. The substitution of the values of inplane

ains and curvatures in the stress-strain relations (9)

ough equations (17) and their subsequent use in equations

20



(12) yield the following form of equilibrium 
equations

hue' + 3 + iji v" + 3 e + 3 ',

AllU "  H A13 2 A16 H B11+g BH 16

45'1
+ 7 B1 3 (X - W I) + t2 - t1 - 0

H

SU" + HA63 0 + A66 V,, + H B61 '1 + H B66

45'e 1 =03 B 63 (X' - I) +  s 2  s a1 P6, 0

S - 3  ¢,of V'+3(B - B55

231 11 5 5  
4 j33 2 36 H 31 55

3 .- .15"- 
45 ) x" + 45"

+ _-H (B 3 6 -B 4 Q) ' +  B - N F55 X B3 3

H 2H

(7 3 F55 - %B 5 5 ) W" -- B3 3 W+A 32 c - - 2 (Pl + P2)

2HH

BIH(B -B) '~ B i-A p
2 II H 1355 2 16 H D11 H A 55

Ri " 3 4 + (45 + 1_ 45 X

.I1 D S (- D1  A 5'7 D45H- 1D453 13 8-H 55 - 55)

H H 2Hi

15 15D
(15 D- + -A 55)W, + 1 (t + - =0

H 3 8H 55 2H3 2 t1) l
H

1s ,. 3 "+ 1 V

B6 1 U" + 3 (B6 3  5 66 v D 6 1 -H 45

3 4" + 5 45D45 x

S 66 H 4 ( 6 3  4 5  2H3
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5 15 + s + 0

- D6 3  H A4 5  3 D4 5 ) W' - 2 (S1 + - 6
H 2H3 '

3 + H 4 + (4 D 15 A X"
H 55 A5 5  45 +2 3 D55 8H 55

+ A 15 D5 5 ) W" + p 2 - P1 =08H 2 55 H13D5)2 p0+ (+ A55 D25)

B31 F B + B + (D D55
1 31 2 H H33 2 36 H 31 2 (23)

211

3 D D15- D 45 45
+ H (03 6- ) + (6 05 5- 4H 3 H55) X "+ -- 03 3 x

15 9 W" 15 W+Q +B )0

4H 3  55-I- 5 H 3 33 32 - 3 - 2- (P2-Pl1

As for the local domain, in the foregoing equations we have

used

C1 = C3 = 4 = C5 = C6 = 0

C 2 =2E

In equation (23) the effective modulus matrices defined in

equations (9) are used. The continuity conditions (13)and (13a)

at local--global interface, on substitutions of (17) and (14) of

the present paper and equations (16) of [11, reduce to

t(N) = t(N+l)

s(N) = (N+ I )

pN) = (N+l)
2 1
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.W,+,_U _1 ES -h (sSX -1 U-[-2 $55 3t 2_t1)+45(32-sl 1 N

(N+l)

= (-U + 3 ')

V_ oh S t )+ s4 (3 1)N

- (-V + 3 ) (N+l)

{ 33  7A13 105 7 _153--L--- 1--. u' + ( S3
2T 33 S 33 236 213

225 B  525 t75. 105

33'2hS 3)x + ,-32- 3W 3a
2h733 S S3 3 2hS 2 36

7A3 3  15B33S33 7A (6 331
+ hp (l--T-S3 3+ 1 3 )+hp2 (6- 10 14 )

< - 3 (N+1)

= 15 × - L3 - W (25)

The boundary conditions at the top surface considered in the

present investigation are:

s ( N + ) = t ( N + I ) = p ( N + I )  0 (26)

3. EDGE BOUNDARY CONDITIONS

We now turn our attention to the edge boundary conditions,

which require consideration of Nx, Nxy, Vx, Mx ,Mxv, t 1 and t2

for each layer on x = + b, since no displacement edge

conditions are involved in the present class of boundary

value problems. However, all these functions cannot be

independently prescribed because of the consequences of interface

23



continuity and overall equilibrium of the entire laminate.

That is, the interface continuity conditions given by the
(k)

fourth of (20) prohibit arbitrarily prescribed values of t
(k) (1) (N+l)

and t2. Furthermore, t1 and t2  have already been

specified by (21) and (26) for all values of x. These relations,

in conjunction with the first equilibrium equation, see (26)

of 11] ,and equation (12),can be used to establish the result

N+I (k)

I Nx' x = 0 (27)

k=1

which requires that

N+l (k) N+l (k)

_ Nx(b)- N (-b) = 0 (28)xxJ

k=l k=l

(k)
Therefore, only 2N+l values of Nx can be arbitrarily prescribed

on the edges x = + b. We can make the same statement regarding
(k)

N since an equation of the form (28) can be derived inxy

similar fashion for this function. Hence, the edge boundary

conditions for the local domain may be expressed as

(k) (k) (k) (k) (k)
Nx (+b) =Nxy (-b) = (+b) = (+b) =M (+b) =0

(k)
t 2  (+b) = 0 (k = 1,2,... N) (29)

while those for the global domain are

(N+I) (N+I) (N+l) (N+l)
x  (b) =N (b) =V (-+b) = x  (+b)
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(N+l) (N+1) (N+I)
= Mxy (+b) = Rx  (+b) = Sx  (+b) = 0 (30)

Thus, the present boundary value problem consists of the

differential equations (19, 20, 23, and 25) subject to

boundary conditions (21, 26, 29 and 30).

The general solution for each dependent variable consists

of the sum of two parts: i) a complementary solution defined

by the homogeneous form of (19, 20, 23 and 25), and ii) a

particular solution. In the particular solution (denoted by

subscript P), the only nonvanishing functions are given by

(k) (k) (k) (k) (k) (k)

= aI  Xp = a2 
+ a, Wp = 3a2 , k=l,2,...,N+l

(k)
where ai (i=1,2) are constants given by substituting (31) into

(15) and (20) to get

(k) 1 (k) (k)(k)
a1  3(k (A 3 a-A 2 3 hkC), a. = 0, k=l,2,...,N

3A (k 3 2
33

(1) (1)
a2 = 1laI

(k+l) (k) (32)
a2 (k+l) (k) a2

a =a + aI + h , k 1,2... N-i
Fk~l k

where a = heB (a = 1,2,3,6).

Similarly using (31) in (23) and (25), we get
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a - N )
a  B (N+l)

a____A 15 a B
(N+1) (___ 3 A23) 2 - 0 B3 3!

A33

(N+1)

ao -45 [L 3 3 (P3 -A 2 3) A3 3(Q3 -B 2 3)/ (B33-A3 3D 3 3)

(N)
(N+l) 5 (N) a2  (N+l)

a2  20 5 a. + H (a + 2 + a1  (33)

Since the field equations are linear differential equations

with constant coefficients, the complementary solution (sub-

script H) for each dependent variable consists of a series

of terms of the form

(k) Wx
fH = F e k = 1,2 --- N+I (34)

where f(k) represents any of the dependent variables and

F (k) are constants. The substitution of (34) in the homo-

geneous form of equations (19,20, 23 and 25) yields a system

of 13(N+l) linear algebraic equations. This set of equations

can be written in the following matrix form

[J][F] = 0 (34a)

where J is a 13(N+l) x 13(N+l) matrix dependent upon material

properties of the laminate and X, and F is a vector of constants

F(k) defined in (34). For a nontrivial solution of equation (34a),

the determinant of the coefficient matrix J has been equated to

zero and the resulting equation has been solved for specific

values of X by the method of Jenkins and Traub (151.
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The algebraic expressions for the elements of J were not written

owing to the complexity of such expressions, even in the simplest

cases. The computer-calculated values of X have been used to

carry out the required analysis. The extreme (highest and the

lowest) powers of X in the polynomial expansion of [J] were

investigated for small values of N+l and deduced for arbitrary

values of N and M. It was found during numerical calculations

that for incompatible extreme powers of X, the solutions for X were

nonconvergent in the iterative procedure, whereas for compatible

powers these converged very rapidly. Following the procedure

described in (1], the following observations were made i) only

even powers of X occur in the determinant, ii) the lowest

power of X is X4 and iii) the highest power of X is X12(N+1)

As in [1], the functions corresponding to the repeated zero

roots for X can be written in the following form:

U(k) -Ax + AHo 1 o

V(k) - ClX + CHo 1 0

(k) = B(k) (35)
Ho o

(k) = E (k)XHo o

W( k ) = 3 (E (k) + d)

do =o for k =,2,•.,N
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where

(k) (k)
(k) (A1 3A 1 + A3 6 C 1 ) hk
B 6 A (k) k " N

33

(1) (1)
E0 = hiB (36)

(k+l) (k)
E (k) E (k+l)

h B + - + B k 1,2... N-I

hk+1

(Nfl)-Ha
B0 6( 3 3 D3 3 -B-3 ) 13 D33 -B13 B33 ) A1 + (A36D33-B36B33)C

H 2 C (N+I) H ' '

do 15D3 3  B33o + (B 1 3 A1 + B36 C1)

(N)
(N+I) (N) E (N+I)
E 0 H (B°  + hN + B °  + Y d o

The constants A and C define rigid body translation of the

laminate as a unit. The remaining constants in (35) can

all be expressed in terms of A1 and C1 . Hence, two constants

which effect the stress distribution have been introduced in

the repeated zero part of the homogeneous solution.

The remaining portion of the complementary solution consists of

functions of the form (34) corresponding to the 12(N+1)-2

nonzero values of X (we are assuming that these roots are
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all distinct). In the present formulation the number of nonzero

values of N.is higher than that obtained in [1]. This is due to the

difference in equilibrium equations for the global domain. The requi-

site number of extra boundary conditions are obtained from the last

two terms of (15). These roots occur in pairs of complex conjugates

a ± ib. Using the eigenvalues and eigenvectors and the edge condi-

tions (29 and 30) we can obtain the solution for the 13(N+Il) func-

tions appearing in (19, 20, 23 and 25) as

12(N+1)-4

F(k) F(k) em + fHo + f(k)p (k=l,2,N+l) (37)
m= 1

where the last two terms are defined by (31-33, 35 and 36).

The force and moment resultants can be computed by substituting

the results of (37) into (17) and (18) and thence into the V
constitutive relations.

When each layer is isotropic and/or oriented at an angle of

0* or 900, the compliance components S1 6, S2 6, S36 and S4 5

and expansional strain e6 vanish in each layer. This leads to

(k) (k) (k) k) (k) (k)
the vanishing of U , t t1  ,t 2  , N and M . Conse-' ''xy xy

quently, the number of field equations and boundary conditions is

reduced. This case must be treated separately by specializing

the present derivation as in [1].

In the model presented in [1], laminates consisting of a

moderate number of layers (N>6) could not be analyzed because

of computer overflow/underflow limitations. Furthermore, while

the present work has focused on a fairly special case (only one
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global-local interface), more general arrangements of global and

local domains can be treated by simple modifications of the gen-

eral relations given here, e.g., equations (13a-13c) must reflect

the proper positions of global and local media. In this way

arbitrary layers can be modeled in a local fashion to define the

stress field in the entire body, if desired.
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SECTION VI

RESULTS AND DISCUSSION

For the computation of numerical results, T300/5208

graphite epoxy material, with the following elastic

properties, has been considered:

E = 20 X 106 psi, E = E 1.4 X 106 psi
11 22 3 1. X 1 ps

6 6
G 12= G = 0.8x10 psi, G2 3 = 0.6 x 10 psi

V1 2 = V 1 3 = 0.3 , 23 = 0.6

where E, G and v stand for Young's modulus, shear modulus

and Poisson's ratio, respectively. The subscripts denote

the corresponding directions, where 1,2,3 stand for x,y,z,

respectively, and v.. is the Poisson ratio measuring strain

in the j direction caused by uniaxial stress a

In most of the earlier investigations on edge effects,

the Poisson ratios v12 ' v1 3 and v 23 were taken to be equal.

A recent experimental study has revealed the values shown

above. In particular, the magnitude of v2 3 was found to be

equal to approximately 0.6 [16].

Figures 3-10 depict the distribution of stress components

z, T xz and Tyz along the width for various laminates. The

abscissa is the laminate width coordinate normalized by the half

laminate thickness, such that in these diagrams X=1 represents

the free edge of the laminate and X=0 represents a point at a

distance equal to the half laminate thickness from the edge.
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These results correspond to the limiting response as the laminate

width approaches infinity and can be shown to be very accurate

for laminates in which the width is more than (approximately)

twice the total thickness. The coordinate axes, stacking sequence

and loading conditions are shown in the figures. In the symbolic

notation for laminate ply orientations, a numeral followed by

H, Q or T denote one half, one quarter or one third, respectively,

thickness of the corresponding layer. The layers under a bar

constitute the global region.

Figure 3 shows the stress component uz at the laminate mid

surface versus X for a (0/±60) - laminate, calculated by using

the formulation of [i, for three different layer thickness

representations. The first representation is such that the

first layer from the midsurface (0°) is modeled as two sublayers,

each of half the layer thickness h/2, and the other two layers

are treated individually. In the second representation, the 00

layer is modeled as three different sublayers of equal thickness

h/3. The third representation considers the 0 ' layer as three

sublayers of h/3 thickness each and the 600 layer as two sub-

layers, each of thickness h/2. The fact that the results by all

the three representations of the laminate are the same show that

these results are nearly exact.

Figure 4 shows the stress component az for (0/(+60)2)s -

laminate by three different representations. For the first

representation, the theory developed in [1] has been used and for

the other two representations the present global-local model has

been used. It has been seen that the results obtained by the
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middle representation i.e. (OH /011 /60/-60/60/-60) are nearly

identical with those obtained by [11 for the same representation

of the local domain. The values obtained through the third

representation only differ slightly from those for the other two

cases. Further analysis shows that the "hump" is caused by

insufficient subdivision of 0* layer, rather than the local-

global model.

Figure 5 shows the variation of the stress component o

along x-axis for (90H /+30/90) s-laminate by three different

representations. It is seen that the results obtained by the

local-global models differ considerably from those obtained by

model of [1]. The results by the third representation differ

from those for the second representation adjacent to the free

edge and are close elsewhere. Figure 6 shows more results for

the same laminate. In this figure the third representation is

the same as that of Figure 5. Also in Figure 6 we have used a

different representation, (90Q/90Q/-30/30/90), of the sime laminate.

In this case it has been found that the agreement between the

[1] model results and the local-global model results is again

quite good. Hence, an extra hump in the results by the tnird rep-

resentation is likely due to insufficient subdivision of the inner

900 layer. This shows that another factor may be important in

obtaining satisfactory results. The precise definition of this

factor is not known presently, however, it appears that a gradual

transition between the local and global regions may be helpful in

obtaining accurate results, i.e. the middle representation of

Figure 6. Another factor involved in the results of Figure 5 is
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computed stress component kiz is of considerably lower

de as compared to that in the laminate of Figure 4. Thus,

olute magnitude of the error in the results for the first

ntation of Figure 5 is small, although the relative error

quite large. It can be seen from Figure 7 that for the

.y representations as those in Figure 5 the relative error

results for (90H /Z15/90) - laminate is small as comparedS

for (90H /+30/90) - laminate. The results for (90Q/s

5/15/90) representation are also computed and are the

s those of the first representation of Figure 7. Thus,

ears that the absolute magnitude of the stress component c

o important in modeling the laminate representations for

te results.

'igure 8 shows the stress component r at the 90/-30 interface

:9011 /+30/90) - laminate. As in the case of az , the results

lel [1] are nearly identical to those by the present model

:90Q/90Q/-30/30/90) representation. The values computed

rh the other representation of the present model are

;ly different from the others. However, the maximum value

will increase with larger numbers of sublayers in the 90*

This is a characteristic of the general class of models

presented and is discussed in more detail in [1].

'igure 9 gives the stress component Tz for the afore-yz

)ned laminate at the 90/-30 interface. In this case also, the

'ison amongst the results by three different representations

Lsonable, although an elastic singularity is expected in

1tress component. Hence, again significant dependence on

,er size will be present near the edge.
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Figure 10 shows the stress component az for (0/(±60)n)s

n=l, 2, 4 laminates as computed by the local-global model. The

results given for the first two values of n, i.e., n=l, 2, are

already shown to be identical with those obtained by using [I],

Figures 3-4. The results for n=4 show the expected trend. There

exist no results in the open literature to compare with these

values.
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SECTION VII

CONCLUSIONS

A self-consistent model has been developed to investigate the

stress fields in laminated media consisting of numerous layers.

The new model defines detailed response functions, such as inter-

laminar stresses and single layer forces and moments in a pre-

determined region of interest (local), while the remainder of the

domain is represented by its effective material properties and the

corresponding resultant forces and moments (global). The local

model employs a theory [11 which approaches the theory -f elasticity

in the limit of vanishing layer thickness. The global model is

based upon the theory given by Whitney and Sun [6] which has been

demonstrated to produce good agreement with elasticity results on

the global boundary for a particular laminate by Pagano [7]. While

a particular arrangement of global and local domains has been

considered here for brevity, there is no difficulty in extending

these results to include more general arrangements, including

the use of more than one global domain. The importance of the

latter option follows from the observation that model accuracy

may be improved by a gradual rather than abrupt transition of

region.

The effectiveness of the model has been demonstrated by use

of numerical examples based upon the free-edge class of boundary

value problems in laminate elasticity. Preliminary results have

been shown to be very promising although an apparent loss in accuracy

occurs in the calculation of stress components of small magnitude,

which may thus require finer subdivision of the local region than
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would normally be required. Similarly, the effect of the afore-

mentioned "transition region" on model precision will require

further study. These studies as well as the development of a solution

schemes for fully three dimensional problems (which will depend

only on two space variables in this theory), will be subject of

future investigations.

It is clear that theories of the type presented here are

needed to describe the response of laminated structural components

used in practice. However, experimental activity in this regard

is vital, as proper interpretation of the field analysis, parti-

cularly in regions of very steep stress gradients, is needed to

characterize initial failure and subsequent damage growth in these

bodies.
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Figure 5. Stress Distribution 0,/(cxlO6) PSI versus Width
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Figure 6. Stress Distribution oz/(ExlO6) PSI versus Width
Coordinate X at the Mid Surface of the Laminate.
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Figure 7. Stress Distribution cz/(cxl 6 ) PSI versus Width
Coordinate X at the Mid Surface of the Laminate.
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